Purpose
To definitively identify *Salmonella* by biochemical testing of the isolated colonies in Laboratory

A. INTRODUCTION

Complete identification of *Salmonella* species requires both:
1. Biochemical characterization and,
2. Serological characterization

Before reporting an isolate as “*Salmonella* species”, ensure that the isolate is identified as *Salmonella* species by tests / biochemicals (e.g., API 20E) AND serology.

This document contains instructions and various flowcharts outlining the minimal characteristics required to definitively identify *Salmonella* species - biochemically. For details around serological testing, refer to Procedure: Salmonella Serology in section B.

Salmonella taxonomy is described in the SUPPLEMENTARY INFORMATION section.

B. IDENTIFICATION

1. Tests

Refer to procedures in Section B for details regarding the following test procedures. Additional biochemical reactions are displayed in Procedure: “Shigella & Salmonella ID – TABLE 1” in section C.

 b) **API 20E:** API 20E is used to finalize the identification of a salmonella-like organism based upon preliminary identification or screening tests. Refer to Microbiology Procedure: API 20E for instructions on how to perform this test.

 c) **Colonial characteristics:** On blood agar: *Salmonellae* are grey/white, non-hemolytic, non-swarming colonies that range from 2 to 3 mm in diameter after 24 hours of incubation. On MacConkey: colourless colonies between 2 to 3 mm in diameter after 24 hours of incubation. On XLD: red-pink colonies from 2-3 mm in diameter at 24 hours; usually with
black centres. *Salmonella* that do not produce H₂S (e.g., most strains of S. paratyphi A) form red-pink colonies with no blackening.

e) **PYR**: Refer to Microbiology Procedure: “PYR” for instructions on how to perform the motility test.
 - Use only fresh overnight growth **ONLY FROM NON-SELECTIVE MEDIA** (i.e., blood and chocolate plates). Do not test inoculum growing on MacConkey and XLD agars.
 PYR-negative organisms require further confirmation as, in addition to *Salmonella*, organisms such as *Proteus*, *Hafnia* and *Morganella* have been found to be PYR-negative (Bennet).

f) **Serology**: Refer to Microbiology Procedure: “Salmonella Serology” for instructions on how to perform this testing. Serological characterization of *Salmonella* species is based upon the detection of 3 antigenic components:
 i) Somatic or “O” antigens [heat stable polysaccharide on cell wall]
 ii) Flagellar or “H” antigens [heat labile protein on flagella]
 iii) Capsular or “Vi” antigen [capsular protein only found only in certain strains]

f) **TSI**: Refer to Microbiology Procedure: “Triple Sugar Iron (TSI)” for instructions on how to perform this test.
 - Make one stab down the center of the medium to within 2 mm of the bottom; then streak the surface of the slant in a “zig zag” fashion.
 - Read reactions no earlier or later than 18 to 24 hours.

f) **Urease**: Refer to Microbiology Procedure: “Urease” for instructions on how to perform this test. Inoculate heavily the surface of the slant with growth from an 18 to 24-hour pure culture; streak in a "zig-zag" manner. Do not stab the butt.
B. IDENTIFICATION (continued)

2. Algorithms / Keys:

The following keys provide support for the definitive identification of *Salmonella*.

Figure 1. Use of screen tests to identify Salmonella-like organisms; leading to definitive identification.

MacConkey agar
Non-Lactose Fermenter
Colourless Colonies

XLD agar
Non-Lactose Fermenter
Red Colonies

Blood Agar
Purity

MacConkey
Purity

4-hr
UREASE

TSI

18-24 hr
UREASE

API 20E: Used to confirm atypical test results

<table>
<thead>
<tr>
<th>Suspect TSI Reactions</th>
<th>Suspect Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slant / Butt</td>
<td>Gas / H₂S</td>
</tr>
<tr>
<td>- / +</td>
<td>G⁺</td>
</tr>
<tr>
<td>- / +</td>
<td>H₂S⁺</td>
</tr>
<tr>
<td>- / +</td>
<td>G⁺, H₂S⁺</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

- ve urea: Setup TSI
+ ve UREASE
+ ve STOP
- ve urea: Continue with TSI

TSI Patterns typical of *Salmonella*

? *Salmonella*: Perform PYR, spot indole, and serology (Poly O and Vi antisera)

<table>
<thead>
<tr>
<th>% Positivity</th>
<th>SEROLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYR</td>
<td>Indole</td>
</tr>
<tr>
<td>Salmonella</td>
<td>0</td>
</tr>
</tbody>
</table>

Report: *Salmonella* species

Each number gives the % positivity after 2 days of incubation at 36°C (Manual of Clinical Microbiology, 8th Edition)
B. IDENTIFICATION (continued)

2. Algorithms / Keys:

Figure 1. Screen tests and expected results for Salmonella-like organisms
(Taken from: Cheesbrough, page 7.11)

<table>
<thead>
<tr>
<th></th>
<th>Motility</th>
<th>Indole</th>
<th>LDC</th>
<th>Slope</th>
<th>Butt</th>
<th>Black (H₂S)</th>
<th>Cracks (Gas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIGELLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shigella dysenteriae</td>
<td>-</td>
<td>d</td>
<td>-</td>
<td>R</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>-</td>
<td>d</td>
<td>-</td>
<td>R</td>
<td>Y</td>
<td>-</td>
<td>-¹</td>
</tr>
<tr>
<td>Shigella boydii</td>
<td>-</td>
<td>d</td>
<td>-</td>
<td>R</td>
<td>Y</td>
<td>-</td>
<td>-²</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>Y</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SALMONELLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella Paratyphi A</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>Y</td>
<td>-³</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella Paratyphi B</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>R</td>
<td>Y</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella Paratyphi C</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>R</td>
<td>Y</td>
<td>+⁴</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella Typhi</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>R</td>
<td>Y</td>
<td>+</td>
<td>Weak</td>
</tr>
<tr>
<td>Other Salmonella serovars</td>
<td>+⁵</td>
<td>-</td>
<td>+</td>
<td>R</td>
<td>Y</td>
<td>+⁶</td>
<td>d</td>
</tr>
</tbody>
</table>

KIA Medium Reactions

Key: KIA = Kligier iron agar, LDC = Lysine decahydroxylase, d = different strains give different results, R = Red-pink (alkaline reaction), Y = Yellow (acid reaction).

Notes
1. Some strains of serotype 6 produce gas. 2. Serotypes 13 and 14 produce gas. 3. About 12% of strains produce H₂S weakly. 4. A minority of strains do not produce H₂S. 5. *Salmonella Pullorum* and *Salmonella Gallinarum* are non-motive. 6. A minority of strains do not produce H₂S.

The reactions of salmonellae and shigellae compared with other enterobacteria are summarized in Chart 7.10 in subunit 7.18.15.
B. **IDENTIFICATION (continued)**

2. **Algorithms / Keys:**

Figure 1. Use of screen tests to identify Salmonella-like organisms

(Taken from: Clinical Microbiology Procedures Handbook, 3rd Edition)

Figure 3.8.1–2 Flowchart for identification of stool pathogens from routine stool cultures. Set up either TSI or KIA, BAP, and urea agar (or rapid urea tube) from all lactose-negative or H₂S-positive colonies on enteric selective agars. Reactions of the slant are listed with a slash before the butt reaction. Optionally for H₂S-negative colonies, Andrade’s glucose tube with Durham tube for gas will eliminate most questionable production of gas and provide a broth for VP testing. Perform spot tests (indole, oxidase, PYR) only from BAP. *r/o* rule out.
B. IDENTIFICATION (continued)

2. Algorithms / Keys:

Figure 2. Differentiation of *Salmonella* from common members of the *Enterobacteriaceae* family.

Taken from: WHO, Basic Laboratory Procedures in Clinical Bacteriology, 2nd Edition
http://www.who.int/medical_devices/publications/basic_lab_procedures_clinical_bact/en/
C. SUPPLEMENTARY INFORMATION

Salmonella nomenclature varies throughout the world. However, uniformity in Salmonella nomenclature is necessary for communication between scientists, health officials, and the public. Unfortunately, current usage often combines several nomenclatural systems that inconsistently divide the genus into species, subspecies, subgenera, groups, subgroups, and serotypes (serovars), and this causes confusion.

The Kauffmann-White Scheme for designation of Salmonella serotypes is maintained by the WHO Collaborating Centre for Reference and Research on Salmonella at the Institute Pasteur and is used by most of the world (JCM, Brenner). In this scheme, the genus Salmonella is divided into two species, Salmonella enterica and Salmonella bongori.

Salmonella enterica is further subdivided into 6 subspecies that are designated by names or Roman numerals. The Roman numerals are simpler and more commonly used. Subspecies IIIa and IIIb were historically considered a separate genus, Arizonae, and are still sometimes referred to by this name.

<table>
<thead>
<tr>
<th>Salmonella enterica subspecies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I enterica</td>
<td>Warm-blooded animals</td>
</tr>
<tr>
<td>II salamae</td>
<td>Cold-blooded animals and the environment</td>
</tr>
<tr>
<td>IIIa arizonae</td>
<td>Cold-blooded animals and the environment</td>
</tr>
<tr>
<td>IIIb diarizonae</td>
<td>Cold-blooded animals and the environment</td>
</tr>
<tr>
<td>IV houtenae</td>
<td>Cold-blooded animals and the environment</td>
</tr>
<tr>
<td>VI indica</td>
<td>Cold-blooded animals and the environment</td>
</tr>
</tbody>
</table>

http://jcm.asm.org/cgi/content/full/38/7/2465

Salmonella bongori was originally designated S. enterica subspecies V. It has since been determined to be a separate species of Salmonella. However, for simplicity and convenience, these strains are commonly referred to as “subspecies V” for the purpose of serotype designation.

There are over 4400 serovars of Salmonella. The vast majority of human isolates (>99.5%) are subspecies S. enterica. For the sake of simplicity, the CDC recommends that Salmonella species be referred to only by their genus and serovar, e.g., Salmonella Typhi instead of the more technically correct designation, Salmonella enterica subspecies enterica serovar Typhi. Refer to the 8th Edition of the Manual of Clinical Microbiology for a full discussion of taxonomic nomenclature.
References